好的教案能够提供多样化的教学方法和策略,满足不同学生的学习风格,教案的编写需要充分考虑学生的学习背景和经验,调研范文网小编今天就为您带来了北师大版五上数学教案精选6篇,相信一定会对你有所帮助。
北师大版五上数学教案篇1
教学内容:教材第14~15页。
教学目标:
1、在实践活动中认识奇数和偶数 ,了解奇偶性的规律。
2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。
3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
教学重点:探索并理解数的奇偶性
教学难点:能应用数的奇偶性分析和解释生活中一些简单问题
教学过程:
一、游戏导入,感受奇偶性
1、游戏:换座位
首先将全班39个学生分成6组,人数分别为4、5、6、7、8、9。我们大家来做个换位置的游戏:要求是只能在本组内交换,而且每人只能与任意一个人交换一次座位。
(游戏后学生发现4人、6人、8人一组的均能按要求换座位,而5人、7人、9人一组的却有一人无法跟别人换座位)
2、讨论:为什么会出现这种情况呢?
学生能很直观的找出原因,并说清这是由于4、6、8恰好是双数,都是2的倍数;而5、7、9是单数,不是2的倍数。
(此时学生议论纷纷,正是引出偶数、奇数的时机)
3、小结:交换位置时两两交换,有的小组刚好都能换位置,像4、6、8、10……是2的倍数,这样的数就叫做偶数;而有的小组有人不能与别人换位置,像5、7、9……不是2的倍数,这样的数就叫做奇数。
学生相互举例说说怎样的数是奇数,怎样的数是偶数。
二、猜想验证,认识奇偶性
活动1
(1)出示题目和情景图:小船最初在南岸,从南岸驶向北岸,再从北岸驶向南岸,不断往返。
(2)提出问题:小船摆渡11次后,船在南岸还是北岸?为什么?
(3)探究活动
学生可能会运用数的方法得出结果,不一定正确。
师:小船摆渡100次后,船在南岸还是北岸?你会怎样做?能保证正确吗?
引导学生运用策略:①列表法;②画示意图法。
三、实践操作、应用奇偶性
我们已经知道了奇偶数的一些特性,现在要用这些特性解决我们身边经常发生的问题。
1、试一试
(1)一个杯子,杯口朝上放在桌上,翻动一次,杯口朝下。翻动两次,杯口朝上……翻动10次呢?翻动19次?105次?请尝试说明理由。
学生动手操作,发现规律:奇数次朝下,偶数次朝上。
师:把杯子换成硬币,你能提出类似的问题吗?
(2)有3个杯子,全部杯口朝上放在桌上,每次翻动其中的两只杯子,能否经过若干次翻转,使得3个杯子全部杯口朝下?
你手上只有一个杯子怎么办?(学生:小组合作)
学生开始动手操作。
反馈:有一小部分学生说能,但是上台展示,要么违反规则,要么无法进行下去。
引导感受:如果我们分析一下每次翻转后杯口朝上的杯子数的奇偶性,就会发现问题的所在。
学生动手操作,尝试发现
交流:一开始杯口朝上的杯子是3只,是奇数;第一次翻转后,杯口朝上的变为1只,仍是奇数;再继续翻转,因为只能翻转两只杯子,即只有两只杯子改变了上、下方向,所以杯口朝上的杯子数仍是奇数。由此可知:无论翻转多少次,杯口朝上的杯子数永远是奇数,不可能是偶数。也就是说,不可能使3只杯子全部杯口朝下。
学生再次操作,感受过程,体验结论。
2、活动2
出示两组数:圆中的数有什么特点?正方形中的数有什么特点?
(1)学生独立猜想,完成“试一试”,小组内汇报交流,然后统一意见进行验证(要求:验证时多选几组进行证明)。
如果两个数相减呢?如果是连加或连减呢?
汇报成果:
(1)奇数﹢奇数=偶数 (2)奇数-奇数=偶数 (3)奇数+奇数+……+奇数=奇数(奇数个)
偶数+偶数=偶数 偶数-偶数=偶数 奇数+奇数+……+奇数=偶数(偶数个)
奇数+偶数=奇数 奇数-偶数=奇数 偶数+偶数+……+偶数=偶数
你能举几个例子说明一下吗?
(学生的举例可以引导从正反两个角度进行)
(2)运用判断下列算式的结果是奇数还是偶数。
10389 + 2004:_____ 46786-5787: _____ 11231+2557+3379+105:
11387 + 131: _____ 60075-997: _____ 335+7757+223+66789+73:
268 + 1024: _____ 9876-5432: _____ 2+4+6+8+10……+998+1000:
3、游戏。规则如下:用骰子掷一次,得到一个点数,以a点为起点,连续走两次,转到哪一格,那一格的奖品就归你。谁想上来参加?
学生跃跃欲试……如果继续玩下去有中奖的可能吗?谁不想参加呢?为什么?
生:骰子始终在偶数区内,不管掷的是几,加起来总是偶数,不可能得到奖品。
是呀,这是老师在街上看到的一个,他就是利用了数的奇偶性专门骗小孩子上当,现在你有什么想法?
学生自由说。
四、课堂小结,课后延伸。
1、说说我们这节课探索了什么?你发现了什么?
2、那如果是4个杯子全部杯口朝上放在桌上,每次翻动其中的3只杯子,能否经过若干次翻转,使得4个杯子全部杯口朝下?最少几次?
教学反思:
踏入七中育才(东区),心情就像这九月的天气一样时阴时晴。教学的压力,学生的现状,迫使我不得不放下我原有的教学模式,改进教学策略,尽快适应这所学校紧张的氛围。
听说学校要组织青年教师公开课比赛,我第一个报了名,旨在让其他老师给我提出一些建设性意见,提高我的课堂教学能力。最后定于第三周完成我的展示。
我上的是五年级数学“数的奇偶性”一节内容。报名后,我便积极的着手准备,钻研教材,查阅资料,设计程式,制作课件,并虚心请教了同教研组的余加秋老师和刘红敏老师,征求了他们的意见。
我的设计思路是:多给学生思维的空间;让学生全方位参与学习;要让学生体验到数学的探索方法;体现数学的生活化和趣味性。为此,我的教学目标定格为:1、在实践活动中认识奇数和偶数,了解奇偶性的规律。2、探索并掌握数的奇偶性,并能应用数的奇偶性分析和解释生活中一些简单问题。3、通过本次活动,让学生经历猜想、实验、验证的过程,结合学习内容,对学生进行思想教育,使学生体会到生活中处处有数学,增强学好数学的信心和应用数学的意识。
在此基础上,我对教学过程进行了如下设计:
一、游戏导入,感受奇偶性
通过两两结对入座的游戏引出数的奇偶性
二、猜想验证,认识奇偶性
教学“活动1”,引导学生运用策略:应用列表法和画示意图法探索数的奇偶性。
三、实践操作、应用奇偶性
1、翻杯子游戏。
2、探索整数加减法得数的奇偶性,通过学生独立猜想,小组内交流,统一验证,巩固练习,让学生自主获取新知。
3、游戏“开心乐”,运用数的奇偶性解释生活中的现象。
四、课堂小结,课后延伸。
课后,教研组组织了所有老师评课。老师们各抒己见,既肯定了我的教学风格,又提出了宝贵的意见,让我受益非浅。我也及时的自省,在不同层面上进行了思考。
1、游戏是学生喜闻乐见的教学形式,能够激发学生的学习兴趣。但是不能没有目的性的为了游戏而游戏,应该在游戏中给学生解决数学问题的启发。本节课,我一共设计了两两结对入座的游戏、翻杯子游戏、“开心乐”等三个游戏,都是结合了教学内容而安排的,第一个游戏重在感受数的奇偶性,第二个游戏重在应用数的奇偶性,第三个游戏重在解释数的奇偶性,游戏的重心最后都落到了“数的奇偶性”上,因此起到了预想的效果。
2、现行的教材内容的广度和深度都有很大的挖掘空间,课前的准备将直接影响课堂教学的容量。本节课,教材上仅有两个活动和两个“试一试”,练习几乎没有,两个活动的探索过程也非常简单,学生稍作思考就能得到正确的答案。课前,我查阅了一些资料,将“翻杯子游戏”和“探索整数加减法得数的奇偶性”进一步拓展,并增加了一些练习,使内容更加丰满,但是练习的典型性、层次性仍然不够,还有值得改进的地方。
3、新课后的应用新知,不能单纯的是例题的改版,还应该有所变化,有所突破,注入新的元素,这样才能让学生灵活牢固的掌握所学知识。这节课中,我所设计的练习就过于程式化,没有跳出固有的“圈”,顺向思维练得多,逆向思维练得少,学生很难推陈出新。
4、数学课上的板书必须要能诠释重点,疏通难点。我在这堂课上的板书做到了前者,而疏漏了后者。“探索整数加减法得数的奇偶性”是本节课的重点,我特意将探索结果板书罗列了出来;探索的过程,是一个不完全归纳的思维过程,本是难点,但我没有把算式板书出来,就有点“空对空”的感觉了。
以上仅是我现有的一点感触,我想,随着教学工作的不断深入,我和学生的不断磨合,教学过程中还有许多的问题等着我去解决,我会以的状态去迎接每一次的挑战。
北师大版五上数学教案篇2
教学内容:
人教版小学数学二年级下册第29页例1及相关内容。
教学目标:
1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。
教学重点:
认识对称现象和轴对称图形的特点。
教学难点:
掌握识别轴对称图形的方法。
教具准备:
多媒体课件、实物图片等。
教学过程:
一、谈话引入,激发兴趣
1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。
2、从蝴蝶形状的风筝引出“对称”
二、合作探究,学习新知
(一)观察图形,认识对称
1、观察几幅对称图形,引导学生感悟对称。
2、说一说生活中的对称现象
(二)动手操作,认识轴对称图形
1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。
2、动手操作,剪出轴对称图形
(1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。
(2)生动手剪出自己喜欢的轴对称图形。
(3)交流展示学生的作品
3、认识对称轴
(1)看一看,摸一摸,说一说
(2)画一画:师示范画出对称轴,然后学生自己画,再交流。
4、初步理解轴对称图形
(1)说一说轴对称图形的特点,初步理解轴对称图形。
(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。
(3)举一举身边的轴对称图形的例子。
三、巩固练习,拓展延伸
1、判一判:哪些是轴对称图形。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
四、课堂总结
通过这节课的学习,你有什么收获?
五、欣赏轴对称图形的美丽
北师大版五上数学教案篇3
一、教材分析
本节课属于综合应用的内容,通过课堂的学习将本册前几个单元分数的再认识,可能性等知识加以整合,进一步加强数学知识与现实生活问题的结合,以提高学生综合实践的能力。本节课教材中安排的3个活动:节日里的活动,长跑接力和有奖游戏,都具有很强的现实性,趣味性与挑战性,能较好的拓展学生的视野,提高学生数学应用的意识,综合利用所学知识解决实际问题的能力。
二、教学目标
1、利用所学分数再认识,可能性等知识进行综合运用,解决一些实际问题。
2、在生活中挖掘数学问题,寻找数学问题,体会数学在日常生活中的应用。
3、在活动过程中,培养学生独立思考,合作交流倾听表达等能力,促使学生思维能力得到进一步发展。
4、通过活动,培养学生用数学的眼光观察生活,解决问题,在游戏中让学生体会成功的喜悦,激发学习的兴趣,培养良好习惯。
三、教学重难点
重点:利用所学分数再认识,可能性等知识进行综合运用,解决一些实际问题。
难点:培养学生用数学的眼光观察生活,解决问题的能力.
四、教学准备:ppt课件
五、教学过程
(一)谈话导入
师:同学们在愉快的学习中即将迎来新年,新年里你们一定会计划做许多事情,说给同学们听一听。
生:我要练习跳舞。
生:我要去商店买东西。
生:我要学画画。
生:我要回奶奶家。
生:我要回姥姥家。
生:我要和老师、同学开联欢会
师:可见同学们在迎新年的这个节日里想做的事情太多了,那么同学们想不想淘气、笑笑班节日里的活动呢?
生齐:想
师:那就让我们共同走进淘气、笑笑班迎新年的活动(板书课题:迎新年)
[从学生的生活实际出发,有利调动学生的学习积极性和探究知识的欲望]
(二)探究活动
活动之一:迎新年
师:请看淘气和笑笑班所有同学节日里的活动。
(ppt出示教材第91页的表格)
生:仔细观察ppt中的表格
师:从表格中你能获取什么数学信息?
生:
师:根据大家获取的信息能提出哪些数学问题呢?
生:自由提问题.大家合作解决这些问题.从而把表格填完整.
生:表格中应分别填35341/10
[根据表格,学生能够自主提出问题,解答问题.因而教师要充分相信学生,给予他们充分的时间和空间]
活动之二:长跑接力
师:刚才对我们对淘气、笑笑班新年里的活动进行了统计、分析,可我们学校新年也有活动安排,那就是准备举办一次长跑接力活动。共有5个接力点,你想一想,5个接力点的位置应该在哪里?(生都陷入了沉思,稍候有一小男孩举起了手)
生1:老师,这5个接力点包括起点和终点吗?
生2:我认为包括,图中加上起点和终点共5个点,不正好吗?
生3:我认为5个接力点不包括起点和终点。你看吧,如果包括,那中间一共才3个点。
生4:就是,刚才题中说的是5个接力点,绝对不包含起点和终点。(迫不及待)
(这时,下面很多同学发出了就是的声音,都同意生3与生4的看法)
师:五个接力点都在长跑路线上,请根据下表确定位置.(ppt出示书中插图)
(学生们有的'拿铅笔先试着轻轻地分着,画着,像是在估计着调整着,有的是拿着尺子在量线路的长度,还有的标过又用橡皮擦擦重新又开始算)
师:现在谁能来说一说你是如何想的,如何做的。
生1:我是根据分数进行估计的。
生2:我是用眼睛大致估计的。
师:课件上做的有可以拖动的点,点着它并拖动就可以放在线路的任意位置。
师:大家觉得这五个接力点确定得公平吗?
生:讨论一翻后认为不公平.
师:怎样设计才公平呢?
生讨论后汇报:如果线路的总长为整体1,那每个接力点的位置该是
生1:1/6、2/6、3/6、4/6、5/6
生2补充:1/6、1/3、1/2、2/3、5/6。
师:根据学生的回答演示5个公平接力点的位置.
[充分发挥学生集中的智慧,利用多次讨论来解决接力点的设计位置,探讨接力点设计的是否合理等问题,培养了学生的合作意识和合作推理能力]
活动之三:有奖游戏。
师:新年里的活动可真丰富,许多有奖游戏等着大家来选择呢?
(媒体出示课本第92页活动(2)的内容)
师:你觉得哪个游戏得奖的可能性大?你愿意参加哪个游戏?
生1:我选第3个游戏,因为得奖的可能性大。
师:那它得奖的可能性是多少呢?
生:2/4。
生2:也可以是1/2。
师:其它2个游戏的得奖的可能性是多少呢?
生5:第一个红球的可能性是1/10,绿球的可能性是1/5。
生6:我认为第二个游戏得奖的可能性较难得出。
师:为什么?
生6:因为每场电影的人数是不同的,所以难以确定得奖率。
师:那你们最愿意参加哪个游戏?
(很多同学都选择游戏3)
(三)知识的运用
师:昨天让大家调查生活中的有奖游戏,让我们把调查的内容在小组内交流一下,看哪一种游戏最有吸引力。
生:汇报交流
(四)总结与布置作业
这节课我们在迎新年的一个个游戏活动中用学过的知识解决了那么多的问题。大家学以致用,真了不起!课下请你也来设计一个有吸引力的游戏?
北师大版五上数学教案篇4
教学目标
1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。
2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
教学准备
教师:多媒体教学等。
学生:白纸、彩纸、剪刀、颜料、钉子板等学习材料一份。
教学过程
一、“玩”对称,谈话激趣
课前交流:从“玩”这一话题引入,结合师生的撕纸作品,自然引入新课学习,激发学生的兴趣。
(今天有这么多老师来听课,我有点担心。同学们你们知道老师担心什么吗?其实老师是担心我们六(1)班的同学不会“玩”。你们会不会玩?老师这有一张白纸,说一说你会玩什么? 想知道我会怎么玩这张纸呢?先把这张纸对折,然后从折痕的地方任意的撕下一块。虽然任意,但撕得还是挺认真的。你们会不会像老师这样玩呢?每人都有机会,不妨请大家也来玩一玩。)二、“识”对称,体悟特征
(谁愿意把自己的作品给大家展示一下?
如果我们把这些看做一个个图形的话,这些图形的大小?形状?但是你们有没有发现这些图形有一个共同的地方?
板书:轴对称图形
刚才同学们给这些图形一个名称,关于他们的特点我们还有待于深入的研究。这些图形除了左右两边一样外,试想一下,如果把这些图形的左右两边对折的话会出现什么样的情形呢?我想了解一下你手中的作品有没有这样的特点?请同学们自己试着折一折。
既然这样的图形对折以后左右两边都重合,那么这样的图形用“轴对称图形”这个名称合适不合适?为什么合适?说说你的理由。1. 结合学生的撕纸作品
2. 引导学生进行观察、比较、概括
3.抽象出这类平面图形的特点。
在此基础上,引导学生结合图形的特征(对折后,折痕两侧完全重叠),师生共同揭示轴对称图形的概念。
4. 从“轴”字出发
5. 引导学生认识轴对称图形的对称轴
6. 并通过说一说
7.指 一指
8. 画一画
9.深入认识对称轴
10. 体会“对称轴是折痕所在的直线”这一内涵
11. 并再次感受轴对称图形的特征。
(折痕所在的这条直线就是对称轴。对称轴通常用点画线来表示。在自己的作品上也画上一条对称轴。对折以后,折痕的两边能完全重合的图形,就叫做轴对称图形。你们能不能很快的说出哪些是轴对称图形)
12. 结合轴对称图形的特征
13. 判断下列图形是否为轴对称图形。
学生根据经验大胆猜想。
结合手中的学具,小组合作,共同验证猜想。
大组进行交流,着重引导学生说清判断的依据。
引导学生理解一般三角形的“非对称性”及等腰(边)三角形的“对称性”,并由此类推到梯形、平行四边形等。
根据活动经验,判断如下三个图形的对称轴的条数。
14.判断国旗中的图案是否是轴对称的。
交流时,引导学生说说判断的依据。
15.判断交通标志中的图案是否是轴对称的。
写下正确的图案标志的序号。
交流:剩下的图案为什么不是轴对称的。
16.想象:根据给出的轴对称图形的左半边,想象它的另一半,并判断给出的是什么图案。
三、“做”对称,深化体验
引导学生结合轴对称图形的特点,利用师生共同准备的一些素材,自己想办法创造一个轴对称图形。
交流时,着重引导学生说清创作过程,并给予激励性评价。
教师相机进行相关资源的分享。
四、“赏”对称,提升认识
由轴对称图形,进而拓展到现实生活中的轴对称现象。引导学生通过赏析,感受大自然的美妙与神奇,并进一步拓宽学生的视野,受到美的洗礼。
轴对称图形
张齐华出一张纸。
如果是你的话,怎么玩?
生:我们折飞机
生:我会折青蛙,
生:我们折出星星
生:我会把这张纸剪成窗花。
师:先把纸对折,然后从折痕的地方,撕下一块。会玩吗?大家玩一玩。
学生撕纸
在黑板上展示学生的作品
师:如果我们这些纸看作一个个图形的话?大家看一看这些图形大小?(不一样),你们有没有发现共同的地方?
生:左右两边都相同。
生:我认为它们轴对称图形的
师:你是怎么知道的这个词儿的?
生:我是从书上看到的。
板书课题。
师:在深入的观察,左右大小就是一样的吗?
生:我认为形状也是一样的
生:我认为面积也是一样的。
生:我认为把它叠在一起的,会重合。
师:你手中的作品有没有这样的特点。
学生动手试一试。
师:现在
北师大版五上数学教案篇5
设计说明
日常生活中蕴涵许多有关小数的问题,已经对小数的相关知识有了一定的了解,本节课在此基础上学习小数点的移动引起小数大小变化的规律。借助课件创设学生自主探究的空间,培养学生的数学综合素质,通过教学让学生掌握小数点位置移动引起小数大小变化的规律。借助“小数点搬家”的情境解决相关的问题,拓展学生的思维,培养学生自主探究、合作交流、应用所学知识解决实际问题的能力。
1.注重生活情境的创设,在探索中获取新知。
通过“蚂蚁快餐厅”中价格变化的情境,先让学生讨论为什么要让小数点搬家,再接着讨论三次标价的变化及实际价格,最后让学生观察小数点向右移动小数大小变化的规律,让学生在理解的基础上讨论小数点向左移动小数大小变化的规律。
2.根据学生的认知结构,突破重难点。
引导学生观察、比较三次不同的标价,它们都有数字“1”,但小数点的位置不同,小数的大小就不同。然后借助元、角、分的关系,让学生了解小数点向右移动时小数的大小如何变化。在此基础上再推出小数点向左移动时小数的大小如何变化,并加以验证。
课前准备
教师准备:ppt课件
学生准备:数字卡片
教学过程
⊙创设情境,激趣导入
我们已经学习了有关小数的知识。小数中最重要的一个符号是什么?(板书:小数点)今天,我把这位客人请进了课堂,看看它会给我们带来什么?
(动画)在轻快的音乐中,草原上跳出三个数字并排列成:256。这时小数点跳出来了,自我介绍:“大家好!我是小数点。”接着小数点跳到5和6之间(25.6),再跳到2和5之间(2.56),小数点说:“同学们!今天我们一起学习小数点搬家。”(板书课题:小数点搬家)
师:哦,原来小数点要搬家了。看了课题你有什么想法吗?
设计意图:通过创设“小数点搬家”的情境,吸引学生的注意力,让学生从具体情境中初步体会小数点的重要性,激发学生的学习兴趣、好奇心和求知欲。
⊙探究新知,合作交流
(一)探索小数点向右移动引起小数大小变化的规律。
1.出示课件,提出疑问。
课件出示主题图:小数点怎样搬的家?小数点的不断搬家使蚂蚁快餐厅的价格发生了怎样的变化?
2.师生共同明确:小数点第一次向右移动了一位,第二次又向右移动了一位,快餐的价格在逐渐增加。
3.在学生回答的基础上明确:快餐的价格由0.01元到0.10元,再到1.00元。
4.请同学们认真观察,0.01、0.10、1.00的小数点的位置有什么变化?它们的大小又有什么变化?请同学们以小组为单位,讨论交流。
5.学生汇报,交流结果。
(1)小数点向右移动一位。
方法一:0.01元=1分,0.1元=1角=10分,10分是1分的10倍,0.1元是0.01元的10倍,所以小数点向右移动一位,就扩大到原数的10倍。
方法二:0.01是,0.1是,0.01是100份中的1份,0.1是10份中的1份。所以0.1是0.01的10倍。所以小数点向右移动一位,就扩大到原数的10倍。
方法三:0.1米看成1分米,0.01米看成1厘米,1分米是1厘米的10倍,0.1是0.01的10倍。所以小数点向右移动一位,就扩大到原数的10倍。
(2)小数点向右移动两位。
0.01元=1分 1.00元=1元
0.01的小数点向右移动两位就是1,1元是1分的100倍,所以0.01的小数点向右移动两位,小数就相当于乘100,得到的数是它的100倍。
6.提问:如果小数点向右移动三位、四位,又会发生怎样的变化呢?同桌之间说一说。
7.小结:小数点太神奇了,它只要向右一跳就扩大,向右跳一位,得到的数就扩大到原来的10倍;向右跳两位,得到的数就扩大到原来的100倍……
北师大版五上数学教案篇6
教学目标:
1.引导学生经历探究积的小数位数与乘数的小数位数的关系的过程,并能运用这个规律确定积的小数位数。
2.让学生通过观察、猜测、验证等活动提高学生的自主探究的能力,渗透转化思想。
3.激发学生学习数学的兴趣,增强他们学好数学的信心。
教学重、难点:探究积的小数位数与乘数的小数位数的关系。
教学准备:ppt。
课时安排:第三课时。
教学过程:
一、复习旧知
1.单位转换:填一填
0.5米=( )分米 3平方分米=( )平方米
0.08平方米=( )平方分米
2.口算:
20×40= 4×6= 7×6= 8×9=
2×4= 0. 4×6= 7×0.06= 0.8×9=
[设计意图]在接下来的新知探究环节,我要让孩子自主探究出0.3×0.2的计算方法,其中就用到通过单位转化将小数转化为整数来计算;小数乘整数是学生第一课时学的内容,复习这一知识,为研究小数乘小数的计算方法奠定了基础。
二、探究新知
1.(出示广场图)同学们看,这是一张会宁县城的街心广场图,从图中你得到哪些数学信息了?
(板书) 广场 花坛 瓷砖
长: 30米 3米 0.3米
宽: 20米 2米 0.2米
2.他们的面积你会算吗?试一试。(学生独立完成)
3.交流:谁来说说你算到的结果是多少?(完成板书)
要算广场和花坛的面积,很简单,算得都不错。瓷砖的面积你算到多少呢?是怎样算的?
4.这样,同学们在小组内先交流一下,听听同伴的方法是不是有道理。
5.谁来向大家介绍一下你计算0.3×0.2的方法?你听明白了吗?
6.学生交流:0.3米=3分米,0.2米=2分米,2×3=6(平方分米),6平方分米=0.06平方米,0.2×0.3=0.06(平方米)
是啊,根据这样的方法,我们发现0.2×0.3=0.06,真了不起!
7.从老师摘录的数据中,你有没有发现这组数据比较特殊,他们的长之间有什么关系?宽呢?
8.引导学生观察广场和花坛的数据:30变成3,缩小到原来的十分之一,20变成2,也缩小到原来的十分之一,结果600变成6,就缩小到原来的一百分之一。联系这个规律,你能说说还可以怎样得出瓷砖的面积吗?
9.施工人员觉得用长0.3米宽0.2米的瓷砖太小了,想改成长0.5米宽0.3米的瓷砖,这样每块瓷砖的面积又是多少呢?(学生独立计算)
10.交流:你是怎样计算的?(板书算式、结果)
11.回过头再来看看我们课开始时口算的几道小数乘法题,
观察0.2×0.3=0.06,0.5×0.3=0.15等一些算式,老师发现一个问题,都是小数乘法,为什么有的结果是一位小数,有的结果却是两位小数呢?你有什么发现?把你的发现和同桌交流一下。
12.全班交流:原来积的小数位数与乘数中小数位数有关,到底有怎样的关系?
北师大版五上数学教案精选6篇相关文章: